221 research outputs found

    Modeling the microstructural evolution during constrained sintering

    Get PDF
    A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as well as the FEM calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of a sample constrained by a rigid substrate is simulated. The constrained sintering results in a larger number of pores near the substrate, as well as anisotropic sintering shrinkage, with significantly enhanced strain in the central upper part of the sample surface, and minimal strain at the edges near the substrate. All these features have also previously been observed experimentally.Comment: 9 pages, 7 figure

    A thermoelectric power generating heat exchanger: Part I - Experimental realization

    Get PDF
    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal interface materials. The device is shown to produce 2 W per TEG or 0.22 W cm−2^{-2} at a fluid temperature difference of 175 ∘^\circC and a flow rate per fluid channel of 5 L min−1^{-1}. One experimentally realized design produced 200 W in total from 100 TEGs. For the design considered here, the power production is shown to depend more critically on the fluid temperature span than on the fluid flow rate. Finally, the temperature span across the TEG is shown to be 55% to 75% of the temperature span between the hot and cold fluids.Comment: 9 pages, 11 figure

    The 2016 oxide electronic materials and oxide interfaces roadmap

    Get PDF
    Lorenz, M. et al.Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide interfaces’. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements.This work has been partially supported by the TO-BE COST action MP1308. J F acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0496) and MAT2014-56063-C2-1R, and from the Catalan Government (2014 SGR 734). F.M.G. acknowledges support from MIUR through the PRIN 2010 Project ‘OXIDE’.Peer reviewe

    Universality of Electron Mobility in LaAlO3_3/SrTiO3_3 and bulk SrTiO3_3

    Get PDF
    Metallic LaAlO3_3/SrTiO3_3 (LAO/STO) interfaces attract enormous attention, but the relationship between the electron mobility and the sheet electron density, nsn_s, is poorly understood. Here we derive a simple expression for the three-dimensional electron density near the interface, n3Dn_{3D}, as a function of nsn_s and find that the mobility for LAO/STO-based interfaces depends on n3Dn_{3D} in the same way as it does for bulk doped STO. It is known that undoped bulk STO is strongly compensated with N≃5×1018 cm−3N \simeq 5 \times 10^{18}~\rm{cm^{-3}} background donors and acceptors. In intentionally doped bulk STO with a concentration of electrons n3D<Nn_{3D} < N background impurities determine the electron scattering. Thus, when n3D<Nn_{3D} < N it is natural to see in LAO/STO the same mobility as in the bulk. On the other hand, in the bulk samples with n3D>Nn_{3D} > N the mobility collapses because scattering happens on n3Dn_{3D} intentionally introduced donors. For LAO/STO the polar catastrophe which provides electrons is not supposed to provide equal number of random donors and thus the mobility should be larger. The fact that the mobility is still the same implies that for the LAO/STO the polar catastrophe model should be revisited.Comment: 4 pages and 1 figur
    • …
    corecore